Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Chemical Engineering Education ; 56(1):57-67, 2022.
Article in English | ProQuest Central | ID: covidwho-1893489

ABSTRACT

This reflective practice contribution presents the lessons learned from teaching plant design using an online flipped format to a small cohort of students in the first COVID-19 semester. These lessons were applied to the online teaching of the capstone design course to a full-sized cohort. The impact of the implemented recommendations on the students' academic outcomes is assessed, focusing on the importance of tracking student engagement in formative learning and encouraging the low-engagers to keep up.

2.
Education for Chemical Engineers ; 2022.
Article in English | ScienceDirect | ID: covidwho-1704381

ABSTRACT

Two core courses have been given for several years to senior chemical engineering undergraduate students in flipped format, combining pre-class online preparation by the students, “class meetings” with the lecturer, and “active tutorials,” in which groups of students solve exercises. In 2020/21, the COVID-19 lockdown imposed online teaching of these courses to the 54 enrolled students. The objective of work presented in this paper is to explore the impact of the remote flipped classroom design on students' learning experience and achievements, in comparison to the regular flipped class in which only the first preparation phase was online. Because the course was taught completely online, a plethora of data was for the first time made available to support a thorough study of the course teaching protocol, including data from Panopto Analytics®, Zoom and Moodle logs, extensive self-report surveys, as well as actual learning outcomes (exam results). Statistical analyses including multivariate regression were performed to determine which factors most affect learning outcomes. The student surveys indicate that of the three class steps, the “active tutorial” gives students the most confidence in their mastery. Furthermore, analysis indicates that active students think that they benefit more than do passive students, as reflected by both self-reporting and final exam performances. The importance of underlying ability, as indicated by the GPA is a principal conclusion from the regression model, which also identifies attendance of “active tutorials” as a dominant positive effect on exam grades. Two important conclusions of our work are that the online and face-to-face versions of our flipped approach achieve indistinguishable learning outcomes and that students’ perceived confidence in their mastery is highest after the active tutorial.

3.
Comput Chem Eng ; 160: 107741, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1693719

ABSTRACT

After more than a year of online teaching resulting from the COVID-19 pandemic, it is time to take stock of the status quo in teaching practice in all things concerning process systems engineering (PSE), and to derive recommendations for the future to harness what we have experienced to improve the degree to which our students achieve mastery. This contribution presents the experiences and conclusions resulting from the first COVID-19 semester (spring 2020), and how the lessons learned were applied to the process design course taught in the second COVID-19 semester (winter 2020) to a class of 53 students. The paper concludes with general recommendations for fostering active learning by students in all PSE courses, whether taught online or face to face.

SELECTION OF CITATIONS
SEARCH DETAIL